A STUDY OF HEAT TRANSFER AND GAS DYNAMICS IN
VESSELS CONNECTED THROUGH A COMPOUND MAIN

I. S. Zhitomirskii and A. G. Podol'skii UDC 536.244

An algorithm is developed for solving on a digital computer the differential equations which
describe the heat transfer and the gas dynamics in a system consisting of two vessels con-
nected through a compound main.

In engineering applications it is often necessary to analyze the heat transfer and the gas dynamics in
vessels connected through a compound main, Such problems may be encountered, for instance, when gas
flows from one container to another, when pipelines in cryogenic apparatus are chilled, or when the work-
ing process in single-stage gas-engine regenerators of refrigerators is studied.

The processes occurring during a one-dimensional unsteady and nonisothermal gas flow through
pipes of wiform or variable cross section, at sudden channel expansions or contractions, and during
emptying or filling of vessels have already been considered in [1, 2], where solutions for special cases
have also been obtained. Numerical methods of solving the problem of unsteady gas flow through pipes
were shown in [3, 4], but there the boundary conditions were defined in terms of certain time-dependent
parameters of the gas stream. Gas transport between connected vessels was considered in [5-8], but the
effect of the main on the gas flow characteristics was either not taken into account or was only roughly
estimated. A system of differential and difference equations was set up in [9] for a refrigerator operating
on the Stirling cycle, but the method of their solution was not given.

In this study the authors consider the problem of determining unsteady one-dimensional tempera-
ture, pressure, and velocity fields under conditions of gas transport between connected vessels, taking
into account the heat fransfer between the gas and the channel wall or a heat storing insert. The mathe-
matics of this problem is somewhat extraordinary, because the conventional boundary conditions for the
system of partial equations describing the gas flow and the heat transfer in the main must be replaced by
the constraints of its coupling to the vessels. Since new unknown quantities are introduced here, namely
the gas parameters in the vessels, it becomes necessary to use the equations of heat and energy balance
in the vessels — ordinary differential equations. An algorithm for solving such a problem numerically
is the object of this study.

The calculation procedure is shown schematically in Fig. 1: two vessels V, and V, of variable vol-
ume and arbitrary shape connected through a main. The vessels can also be connected to external reser-
voirs where the gas parameters are assumed constant,

The problem is solved under the following assumptions: a) heat transfer by conduction through the
gas and through the pipe walls as well as radiation through the gas are negligible in comparison with the
convective heat transfer; b) the thermal conductivity of the porous insert material {illing a segment of
the main is equal to zero in the direction of gas flow and infinitely high in the transverse direction; c)
the walls of the main and of the vessels satisfy the condition Bi = @6,/A; <1 so that the temperature
drop across the wall thickness becomes negligible; d) the working gas is an ideal gas and its specific heat
is constant; e) the volume forces in the gas stream are negligibly small,

The processes in the vessels can be described by a system of ordinary differential equations with
the thermodynamic parameters averaged over the vessel volume [1]}. The flow rate in the subsequent
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Fig. 1. Generalized calculation schematic.
equations will be considered positive during filling and negative during emptying (z = 0 whenn =1, z =y
when n = 2),
The energy equation for the gas is

d .. . d
E‘(mnen): —Pn %n_ + zGenHen'“ Fcnocn (Tn - Tcn) L qn- (1)

The heat balance equation for a wall is

de,, . ' ‘
pcnacn "d% = Qy (Tn - Tcn) i Ggp (Tan - Tcn) e qcn' (2)

The change of mass of gas in a vessel is

dm,

= ZGen @)

The equation of state is
PV, =m,RT,. (4)
The change of vessel volume, as a function of time, is
V, =V, 0. (5)
The change of valve cross section, as a function of time, is

fro="F. () 6)

The energy exchange with an external reservoir GgyHey is determined from the condition of quasi-
steady gas flow from the reservoir to the filling vessel. In order to determine the flow rate Gg,, we use
expressions for a one-dimensional isentropic flow [10].

The heat transfer and the hydrodynamic processes in the main are described by the following sys-
tem of one-dimensional partial differential equations in variables (mean values over the cross section)
{1, 2]

the flow equation
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where S =a/é,, W =ag /6, for the wall and S = (4o /dp)[p/(L—p)}, W = 0 for the insert;

the equation of state
P = pRT. (11)

This system of equations must be supplemented by the temperature characteristics of those thermo-
physical properties which are subject to appreciable variations over the analyzed temperature range, be-
cause such variations may have an appreciable effect on the processes (as has been shown in [11]). Coef-
ficients &, and B, are further assumed both equal to unity.

As the initial conditions we stipulate any arbitrary distributions of gas temperature, gas pressure,
gas velocity, gas mass, vessel wall temperature, and main wall temperature:

P (0)=Pn T,(0)=Tn Te(0)=Tew m,(0)=md
Vo =Va; PO, x)=Py(x); T(0, %) = Ty(x); 12)
T, (0, x) =Ty (x); U0, x) =U, ().

The system of equations (7)-(11) is hyperbolic and comprises four families of characteristics:
dejdt =U, dxidl =U +a;, dxidi=0.

The trend of these characteristics calls for two boundary conditions at the entrance to the main and one
boundary condition at the exit from the main [12]. Such a stipulation of boundary conditions is not feasible
in this case, but equivalent constraints are available here: the coupling of the main to each vessel, with
the number of constraints at the entrance to and at the exit from the main necessarily corresponding to
the number of required boundary conditions. Thus, for subsonic gas flow, at the enfrance we use two
constraints (U < a, a denoting the velocity of sound in the gas stream [1]):

2 -
P, = Py + Loy Ut — conservation of momentum;

—— RT, = 2% RT, + U} — conservation of energy.

k——l k—1

(19

As the coupling constraint at the exit we use the conservation of momentum (the gas pressure in the
jet entering a vessel and the gas pressure in the vessel are not very different; this is not true of the tem-~
peratures and, therefore, using the conservation of energy as the coupling constraint serves no purpose
here): '

P,=P, —{— Cypry — conservation of momentum, (14)
ﬂ

If the exit is replaced by a blind wall, then a constraint is provided which represents a boundary con-
dition here (U = 0).

The resulting system of differential equations and constraints (1)-(14), which describes the heat
transfer and the gas dynamic characteristics of a unidirectional flow of gas between connected vessels, is
solved by the finite-differences method. The original equations, after a few transformations, are ap-
proximated by a system of difference equations (first-order implicit scheme [12]): '

i+l T:l ; 1 R i V 1 V‘

nT 2 — k)T A — M lkTen) — Th] — A —7 Tf + 4, Tcn+ cmz , (15)
i+1_ pi A ;
BT —Po . ppirig o R osGER@LY — 4,2 P 4 ARTL + BB, (16)
T V mn Can
i1
T M sGit, (17)
where
; 4
A= Ve A=y ——
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f,'H — energy exchange with reservoir.
GI+I

en { Ut ol F, — energy exchange with main,

When a vessel is filled

o T, — energy exchange with reservoir.
=1 (Ten) = . (Ui-i-l)z
) T, + _25_ — energy exchange with main,
c
‘When gas is discharging from a vessel

(Tgn)i T g — { mimlh — discharge into reservoir

1 — discharge into main.

The gas flow rate Gia+1 is determined according to [10]:
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where By = Uji +1 for B, > 0 and By = U;“”; for B, <0, By =1-Fj_;/Fj;
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F

n

The system of difference equations (19)-(21) is solved by the method of orthogonal elimination [13].
For this purpose, Egs, (19)-(21) are written as

AXI+ BXT = C, (25)
. U
where A;, BJE are square matrices of coefficients for a certain time interval; X =| P |is a vector whose
T

components are the sought gasthermodynamic parameters in the main,
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The coupling constraints are expressed as

LEX5T = b . (26)
WX =,

where Lo, N are rectangular matrices, 2 X 3 and 1 x 3, respectively, formed from Eqgs. (23) and (24)
by eliminating pL+ and T1‘1+1 with the aid of Egs. (15)- (16) and a subsequent linearization with respect to
velocity Ui+l =ul L AUl). The computation of gas stream parameters in the main is then organized as
shown in [13]. After Ul+!, pi+! and TJ1 +1 for the main have been determined from known discharge

velocities Ul+1 and U§,+1, we find the gasthermodynamic parameters in the vessels from Eqgs. (15)-(17),

In the case of emptying a main which is closed at one end, another relation (in addition to U =0) is
required according to (26). As this extra relation we use the characteristic equation (corresponding to the
dx/dt = U characteristic), which for U = 0 becomes

757 —Th k—1 Th Pi—p} 4o R—!

T k P} T dy k Po

5 — Th). 27)

The temperature of the vessel walls Té;;i and sz“ is found from Eqgs. (18) and (22), respectively.

Thus, all gasthermodynamic parameters in the vessels and in the connecting main have been determined
for the (i + 1)-th time interval, A time interval should be approximately equal to 0.005-0.01 of the total
process time (for calculating the discharge from vessel to the reservoir this time interval should be 0.001-
0.002 of the total process time); the space interval should be approximately equal to 0.03-0.05 of the total
main length.

This procedure was used with a model M-222 digital computer for calculating the transient mode
in a single-stage gas-engine regenerator of a refrigerator operating on the MacMahon cycle (the feasibility
of computing the steady-state mode in this and in some other refrigeration engines was considered in [14])
and for calculating the chill in the pipeline of eryogenic apparatus based on a gas cycle. The heat transfer
and the drag coefficients were determined from respective empirical relations as in [15, 16]. The thermo-
physical properties of the gas and of the heat—transfer surfaces in these calculations were picked accord-
ing to [17] and assumed constant,

For calculating the chill in the engine (cylinder diameter 0.04 m, piston stroke 0.04 m, speed 250
rpm, working gas helium, refrigeration output 5 W), V, was a-volume equal to the total volume of all hot
gas-supply channels from the reservoir to the cold compartment, V, was the displacer, and the main
was the regenerator connecting both, As the apparatus runs into the operating mode, the insert tempera-
ture at the cold end of the regenerator varies as shown in Fig. 2 (curves 1, 2, 3), dropping almost linearly
from 300 to 150°C. The duration of the transient is not the same at all sections of the regenerator: stabil-
ization in the hotter sections of the insert proceeds faster, The steady-state temperature distribution
in the insert along the regenerator (Fig, 2, curves 4, 5, 6), with the thermodynamic parameters in the
vessels assumed invariable (variations of the gas temperature and the gas pressure in the displacer during
the operating cycle are shown in Fig. 3), departs from the linear distribution based on constant boundary
conditions [11]. The pressure losses in the regenerator occur essentially during filling and emptying the
system, and they may be as high as 2 -10° N/m? (Fig. 2, curve 7).

For calculating the chill in the pipeline, vessel V, is the gas pad containing liquefied nitrogen and
receiving gas at a constant flow rate of 0.1 kg/sec, vessel V, is the gas container or the surrounding
space. A pipeline (diameter 0.2 m, length 100 m, wall thickness 0.005 m, thermal influx 5 W/m?, ma-
terial: stainless steel) serves as the connecting main between vessels V; and V,. Variations in both the
gas and the wall temperature at various points along the pipeline during chilling are shown in Fig. 4. The
distributions of both the gas and the wall temperature along the chilled pipeline may be considered ap-
proximately linear, with the underrecuperation almost wiform and equal to 5°C throughout the length.

This algorithm for solving the system of differential equations which describe steady-state heat
transfer and gas dynamic processes in vessels connected through a compound main makes it feasible
to calculate the variation of parameters in engineering devices and to incorporate these variations into
the computation scheme.

16



=5 o

[¢] e v o+
=gy R <ag g

o]

T |- %)

/30 n 20 i

200

"o %5

200 200

Y | ’

ot 16

100 SRS . M 100 NS
0 %0 s > 5 g
a go2 l 0 0/2 ¢ ) 14 2 0
Fig. 2 Fig. 3 Fig. 4

Fig. 2, Variation in the insert temperature T (°K) at various regenerator sections during a transient
[1YZ =0; 2) 0.02; 3) 0.04 m], along the regenerator [4) t = 10; 5) 20; 6) 75 sec}; 7) variation of the gas
pressure P (N/m?) along the regenerator (at instant of time t,).

Fig. 3. Variation in the gas temperature (1) and pressure (2) during the working cycle under steady-
state conditions: temperature T (°K); time t (sec); pressure P (N /m?),

Fig. 4. Variation in the wall temperature (°K) of the chilled pipeline [1) I = 0; 2) 50; 3) 100 m].

NOTATION

is the gas temperature;

is the wall temperature;

is the pressure;

is the velocity;

is the internal energy;

is the total enthalpy;

is the enthalpy;

is the time;

is the length;

is the mass of gas in a vessel;

is the density of gas;

is the density of wall material;

is the gas flow rate;

is the volume;

is the heat-transfer coefficient;

is the drag coefficient;

is the thermal flux;

is the diameter of cylinder;

is the hydraulic diameter;

is the specific heat of gas at constant pressure;
is the specific heat of gas at constant volume;
is the specific heat of wall material;

is the wall thickness;

is the area of valve cross section;

is the active cross section of gas stream;

Fen is the heat-transfer surface;

is the gas constant;

is the porosity;

is the adiabatic exponent;
is the length of main;
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is the duration of process;

is the time interval in computation;

is the space interval in computation;

is the number of time computation points;
is the number of space computation points;

1» By are the coefficients of velocity and density nonuniformity across a section of the main.

Subscripts

0
n
z
a
w
i

j

[ :
_Nj—‘.oso.ooqmmphwml-‘

i3.
14,

15,

16.

17,

18

denotes the initial state;

denotes the vessel number;

denotes the coupling point between main and vessel;
denotes the ambient medium;

denotes the wall;

denotes the time point;

denotes the space point,
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